Classification/regression models

createAlexNetModel2D()

2-D implementation of the AlexNet deep learning architecture.

createAlexNetModel3D()

3-D implementation of the AlexNet deep learning architecture.

createDenseNetModel2D()

2-D implementation of the DenseNet deep learning architecture.

createDenseNetModel3D()

3-D implementation of the DenseNet deep learning architecture.

createGoogLeNetModel2D()

2-D implementation of the GoogLeNet deep learning architecture.

createResNetModel2D()

2-D implementation of the ResNet deep learning architecture.

createResNetModel3D()

3-D implementation of the ResNet deep learning architecture.

createWideResNetModel2D()

2-D implementation of the Wide ResNet deep learning architecture.

createWideResNetModel3D()

3-D implementation of the Wide ResNet deep learning architecture.

createVggModel2D()

2-D implementation of the VGG deep learning architecture.

createVggModel3D()

3-D implementation of the VGG deep learning architecture.

createResNetWithSpatialTransformerNetworkModel2D()

2-D implementation of the ResNet deep learning architecture with a preceding spatial transformer network layer.

createResNetWithSpatialTransformerNetworkModel3D()

3-D implementation of the ResNet deep learning architecture with a preceding spatial transformer network layer.

createSimpleClassificationWithSpatialTransformerNetworkModel2D()

2-D implementation of the spatial transformer network.

createSimpleClassificationWithSpatialTransformerNetworkModel3D()

3-D implementation of the spatial transformer network.

createSimpleFullyConvolutionalNeuralNetworkModel3D()

Implementation of the "SCFN" architecture for Brain/Gender prediction

Object localization models

createSsd7Model2D()

2-D implementation of the SSD 7 deep learning architecture.

createSsd7Model3D()

3-D implementation of the SSD 7 deep learning architecture.

createSsdModel2D()

2-D implementation of the SSD deep learning architecture.

createSsdModel3D()

3-D implementation of the SSD deep learning architecture.

SSD-specific helper functions

AnchorBoxLayer2D

Anchor box layer for SSD architecture (2-D).

AnchorBoxLayer3D

Anchor box layer for SSD architecture (3-D).

L2NormalizationLayer2D

L2 2-D normalization layer for SSD300/512 architecture.

L2NormalizationLayer3D

L2 3-D normalization layer for SSD300/512 architecture.

LossSSD

Loss function for the SSD deep learning architecture.

convertCoordinates()

Convert coordinates to/from min/max representation from/to centroids/width

decodeSsd2D()

Decoding function for 2-D Y_train

decodeSsd3D()

Decoding function for 3-D Y_train

drawRectangles()

Plotting function for 2-D object detection visualization.

encodeSsd2D()

Encoding function for 2-D Y_train

encodeSsd3D()

Encoding function for 3-D Y_train

jaccardSimilarity()

Jaccard similarity between two sets of boxes.

Segmentation

createUnetModel2D()

2-D implementation of the U-net deep learning architecture.

createUnetModel3D()

3-D image segmentation implementation of the U-net deep learning architecture.

createResUnetModel2D()

2-D implementation of the Resnet + U-net deep learning architecture.

createResUnetModel3D()

3-D implementation of the Resnet + U-net deep learning architecture.

createDenseUnetModel2D()

2-D implementation of the dense U-net deep learning architecture.

createDenseUnetModel3D()

3-D implementation of the dense U-net deep learning architecture.

createNoBrainerUnetModel3D()

Implementation of the "NoBrainer" U-net architecture

createHippMapp3rUnetModel3D()

Implementation of the "HippMapp3r" U-net architecture

createSysuMediaUnetModel2D()

Implementation of the sysu_media U-net architecture

createHypothalamusUnetModel3D()

3-D u-net architecture for hypothalamus segmentation

Segmentation-specific helper functions

decodeUnet()

Decoding function for the u-net prediction outcome

encodeUnet()

One-hot encoding function

ScaleLayer

Custom scale layer

Super-resolution

createDeepDenoiseSuperResolutionModel2D()

2-D implementation of the deep denoise image super resolution architecture.

createDeepDenoiseSuperResolutionModel3D()

3-D implementation of the deep denoise image super resolution architecture.

createDenoisingAutoEncoderSuperResolutionModel2D()

2-D implementation of the denoising autoencoder image super resolution architecture.

createDenoisingAutoEncoderSuperResolutionModel3D()

3-D implementation of the denoising autoencoder image super resolution architecture.

createExpandedSuperResolutionModel2D()

2-D implementation of the expanded image super resolution architecture.

createExpandedSuperResolutionModel3D()

3-D implementation of the expanded image super resolution architecture.

createImageSuperResolutionModel2D()

2-D implementation of the image super resolution deep learning architecture.

createImageSuperResolutionModel3D()

3-D implementation of the image super resolution deep learning architecture.

createResNetSuperResolutionModel2D()

2-D implementation of the ResNet image super resolution architecture.

createResNetSuperResolutionModel3D()

3-D implementation of the ResNet image super resolution architecture.

createDeepBackProjectionNetworkModel2D()

2-D implementation of the deep back-projection network.

createDeepBackProjectionNetworkModel3D()

3-D implementation of the deep back-projection network.

applySuperResolutionModelToImage()

Apply a pretrained model for super resolution.

Super-resolution helper functions

MSE()

Mean square error of a single image or between two images.

MAE()

Mean absolute error of a single image or between two images.

PSNR()

Peak signal-to-noise ratio between two images.

SSIM()

Structural similarity index (SSI) between two images.

Registration and transforms

SpatialTransformerLayer2D

Spatial transformer layer (2-D)

SpatialTransformerLayer3D

Spatial transfomer layer (3-D)

Generative adverserial networks (GAN)

VanillaGanModel

Vanilla GAN model

DeepConvolutionalGanModel

Deep convolutional GAN (DCGAN) model

WassersteinGanModel

Wasserstein GAN model

ImprovedWassersteinGanModel

Improved Wasserstein GAN model

CycleGanModel

Cycle GAN model

SuperResolutionGanModel

Super resolution GAN model

InstanceNormalizationLayer

Creates an instance normalization layer

layer_instance_normalization()

Instance normalization layer

Attention

AttentionLayer2D

Attention layer (2-D)

AttentionLayer3D

Attention layer (3-D)

layer_attention_2d()

Attention layer (2-D)

layer_attention_3d()

Attention layer (3-D)

EfficientAttentionLayer2D

Efficient attention layer (2-D)

EfficientAttentionLayer3D

Efficient attention layer (3-D)

layer_efficient_attention_2d()

Efficient attention layer (2-D)

layer_efficient_attention_3d()

Efficient attention layer (3-D)

Deep embedded clustering (DEC)

DeepEmbeddedClusteringModel

Deep embedded clustering (DEC) model class

ClusteringLayer

Clustering layer for Deep Embedded Clustering

createAutoencoderModel()

Function for creating a symmetric autoencoder model.

createConvolutionalAutoencoderModel2D()

Function for creating a 2-D symmetric convolutional autoencoder model.

createConvolutionalAutoencoderModel3D()

Function for creating a 3-D symmetric convolutional autoencoder model.

Mixture density networks

MixtureDensityNetworkLayer

Mixture density network layer

getMixtureDensityLossFunction()

Returns a loss function for the mixture density.

getMixtureDensitySamplingFunction()

Returns a sampling function for the mixture density.

getMixtureDensityMseAccuracyFunction()

Returns a MSE accuracy function for the mixture density.

splitMixtureParameters()

Splits the mixture parameters.

sampleFromCategoricalDistribution()

Sample from a categorical distribution

sampleFromOutput()

Sample from a distribution

mixture_density_network_softmax()

Softmax function for mixture density with temperature adjustment

Custom metrics/losses

binary_dice_coefficient()

Dice function for binary segmentation problems

multilabel_dice_coefficient()

Dice function for multilabel segmentation problems

peak_signal_to_noise_ratio()

Function to calculate peak-signal-to-noise ratio.

pearson_correlation_coefficient()

Function for Pearson correlation coefficient.

categorical_focal_gain()

Function for categorical focal gain

categorical_focal_loss()

Function for categorical focal loss

weighted_categorical_crossentropy()

Function for weighted categorical cross entropy

maximum_mean_discrepancy()

Function for maximum-mean discrepancy

Custom activations

layer_activation_log_softmax()

Log softmax layer

peak_signal_to_noise_ratio()

Function to calculate peak-signal-to-noise ratio.

pearson_correlation_coefficient()

Function for Pearson correlation coefficient.

categorical_focal_gain()

Function for categorical focal gain

categorical_focal_loss()

Function for categorical focal loss

Data augmentation

basisWarp()

Generate a deformable map from basis

randomImageTransformAugmentation()

Apply random transforms to a predictor / outcome training image set

randomImageTransformBatchGenerator

Random image transformation batch generator

randomImageTransformParametersAugmentation()

Generate transform parameters and transformed images

randomImageTransformParametersBatchGenerator

Random image transform parameters batch generator

randomlyTransformImageData()

Randomly transform image data (optional: with corresponding segmentations).

dataAugmentation()

Randomly transform image data.

histogramWarpImageIntensities()

Transform image intensities based on histogram mapping.

simulateBiasField()

Simulate random bias field

Misc

preprocessBrainImage()

Basic preprocessing pipeline for T1-weighted brain MRI

extractImagePatches()

Extract 2-D or 3-D image patches.

cropImageCenter()

Crop the center of an image.

padOrCropImageToSize()

Pad or crop image to a specified size

padImageByFactor()

Pad an image based on a factor.

reconstructImageFromPatches()

Reconstruct image from a list of patches.

getPretrainedNetwork()

getPretrainedNetwork

getANTsXNetData()

getANTsXNetData

regressionMatchImage()

Image intensity normalization using linear regression.

ResampleTensorLayer2D

Creates a resample tensor layer (2-D)

ResampleTensorLayer3D

Creates a resampled tensor (to fixed size) layer (3-D)

layer_resample_tensor_2d()

Creates a resampled tensor (to fixed size) layer (2-D)

layer_resample_tensor_3d()

Resampling a spatial tensor (3-D).

ResampleTensorToTargetTensorLayer2D

Creates a resampled tensor (to target tensor) layer (2-D)

ResampleTensorToTargetTensorLayer3D

Creates a resampled tensor (to target tensor) layer (3-D)

Applications

brainExtraction()

Brain extraction

deepAtropos()

Six tissue segmentation

corticalThickness()

Cortical thickness using deep learning

longitudinalCorticalThickness()

Longitudinal cortical thickness using deep learning

lungExtraction()

Lung extraction

brainAge()

BrainAGE

hippMapp3rSegmentation()

hippMapp3rSegmentation

sysuMediaWmhSegmentation()

White matter hyperintensity segmentation

claustrumSegmentation()

Claustrum segmentation

hypothalamusSegmentation()

Hypothalamus segmentation

deepFlash()

Hippocampal/Enthorhinal segmentation using "Deep Flash"

deepFlashDeprecated()

Hippocampal/Enthorhinal segmentation using "Deep Flash"

desikanKillianyTourvilleLabeling()

Cortical and deep gray matter labeling using Desikan-Killiany-Tourville

mriSuperResolution()

Super-resolution for MRI

neuralStyleTransfer()

Neural transfer style

tidNeuralImageAssessment()

Perform MOS-based assessment of an image.

elBicho()

Functional lung segmentation.

arterialLesionSegmentation()

Arterial lesion segmentation