Original generative adverserial network from the paper:
https://arxiv.org/abs/1406.2661
and ported from the Keras (python) implementation:
https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py
$initialize
instantiates a new class and builds the
generator and discriminator.
$buildGenerator
build generator.
$buildGenerator
build discriminator.
Tustison NJ
if (FALSE) { library( keras ) library( ANTsRNet ) keras::backend()$clear_session() # Let's use the mnist data set. mnist <- dataset_mnist() numberOfTrainingData <- length( mnist$train$y ) inputImageSize <- c( dim( mnist$train$x[1,,] ), 1 ) x <- array( data = mnist$train$x / 255, dim = c( numberOfTrainingData, inputImageSize ) ) y <- mnist$train$y numberOfClusters <- length( unique( mnist$train$y ) ) # Instantiate the DCEC model ganModel <- VanillaGanModel$new( inputImageSize = inputImageSize, latentDimension = 100 ) ganModel$train( x, numberOfEpochs = 100 ) }