R/createResUnetModel.R
createResUnetModel3D.Rd
Creates a keras model of the U-net + ResNet deep learning architecture for image segmentation and regression with the paper available here:
createResUnetModel3D( inputImageSize, numberOfOutputs = 1, numberOfFiltersAtBaseLayer = 32, bottleNeckBlockDepthSchedule = c(3, 4), convolutionKernelSize = c(3, 3, 3), deconvolutionKernelSize = c(2, 2, 2), dropoutRate = 0, weightDecay = 0.0001, mode = c("classification", "regression") )
inputImageSize | Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
---|---|
numberOfOutputs | Meaning depends on the |
numberOfFiltersAtBaseLayer | number of filters at the beginning and end
of the |
bottleNeckBlockDepthSchedule | vector that provides the encoding layer schedule for the number of bottleneck blocks per long skip connection. |
convolutionKernelSize | 2-d vector defining the kernel size during the encoding path |
deconvolutionKernelSize | 2-d vector defining the kernel size during the decoding |
dropoutRate | float between 0 and 1 to use between dense layers. |
weightDecay | weighting parameter for L2 regularization of the kernel weights of the convolution layers. Default = 0.0. |
mode | 'classification' or 'regression'. |
a res/u-net keras model
\url{https://arxiv.org/abs/1608.04117}
This particular implementation was ported from the following python implementation:
\url{https://github.com/veugene/fcn_maker/}
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not existmetric_multilabel_dice_coefficient <- custom_metric( "multilabel_dice_coefficient", multilabel_dice_coefficient )#> Error in value[[3L]](cond): The R function's signature must not contains esoteric Python-incompatible constructs. Detailed traceback: #> Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not existloss_dice <- function( y_true, y_pred ) { -multilabel_dice_coefficient(y_true, y_pred) } attr(loss_dice, "py_function_name") <- "multilabel_dice_coefficient" model %>% compile( loss = loss_dice, optimizer = optimizer_adam( lr = 0.0001 ), metrics = c( metric_multilabel_dice_coefficient, metric_categorical_crossentropy ) )#> Error in compile(., loss = loss_dice, optimizer = optimizer_adam(lr = 1e-04), metrics = c(metric_multilabel_dice_coefficient, metric_categorical_crossentropy)): object 'model' not found#> Error in print(model): object 'model' not found