R/superResolutionUtilities.R
applySuperResolutionModelToImage.Rd
Helper function for applying a pretrained super resolution model. Apply a patch-wise trained network to perform super-resolution. Can be applied to variable sized inputs. Warning: This function may be better used on CPU unless the GPU can accommodate the full image size. Warning 2: The global intensity range (min to max) of the output will match the input where the range is taken over all channels.
applySuperResolutionModelToImage( image, model, targetRange = c(-127.5, 127.5), batchSize = 32, regressionOrder = NA, verbose = FALSE )
image | input image. |
---|---|
model | pretrained model or filename (cf |
targetRange | a vector defining the |
batchSize | batch size used for the prediction call. |
regressionOrder | if specified, then apply the function
|
verbose | If |
super-resolution image upscaled to resolution specified by the network.
Avants BB
if (FALSE) { image <- applySuperResolutionModelToImage( ri( 1 ), getPretrainedNetwork( "dbpn4x" ) ) }