R/createDeepBackProjectionNetworkModel.R
createDeepBackProjectionNetworkModel2D.Rd
Creates a keras model of the deep back-project network for image super resolution. More information is provided at the authors' website:
createDeepBackProjectionNetworkModel2D( inputImageSize, numberOfOutputs = 1, numberOfBaseFilters = 64, numberOfFeatureFilters = 256, numberOfBackProjectionStages = 7, convolutionKernelSize = c(12, 12), strides = c(8, 8), lastConvolution = c(3, 3), numberOfLossFunctions = 1 )
inputImageSize | Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). |
---|---|
numberOfOutputs | number of outputs (e.g., 3 for RGB images). |
numberOfBaseFilters | number of base filters. |
numberOfFeatureFilters | number of feature filters. |
numberOfBackProjectionStages | number of up-/down-projection stages. This number includes the final up block. |
convolutionKernelSize | kernel size for certain convolutional layers. This
and |
strides | strides for certain convolutional layers. This and the
|
lastConvolution | the kernel size for the last convolutional layer |
numberOfLossFunctions | the number of data targets, e.g. 2 for 2 targets |
a keras model defining the deep back-projection network.
\url{https://www.toyota-ti.ac.jp/Lab/Denshi/iim/members/muhammad.haris/projects/DBPN.html}
with the paper available here:
\url{https://arxiv.org/abs/1803.02735}
This particular implementation was influenced by the following keras (python) implementation:
\url{https://github.com/rajatkb/DBPN-Keras}
with help from the original author's Caffe and Pytorch implementations:
\url{https://github.com/alterzero/DBPN-caffe} \url{https://github.com/alterzero/DBPN-Pytorch}
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Warning: object 'model' not found#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2501655 133.7 4570014 244.1 NA 4570014 244.1 #> Vcells 4404614 33.7 10146329 77.5 65536 6714963 51.3