2-D implementation of the denoising autoencoder image super resolution architecture.

createDenoisingAutoEncoderSuperResolutionModel2D(
  inputImageSize,
  convolutionKernelSizes = list(c(3, 3), c(5, 5)),
  numberOfEncodingLayers = 2,
  numberOfFilters = 64
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

convolutionKernelSizes

a 2-element list of 2-D vectors specifying the kernel size at each convolution layer. The first element is the kernel size of the encoding layers and the 2nd element is the kernel size of the final convolution layer.

numberOfEncodingLayers

the number of encoding layers.

numberOfFilters

the number of filters for each encoding layer.

Value

a keras model for image super resolution

Author

Tustison NJ

Examples

createDenoisingAutoEncoderSuperResolutionModel2D(c( 28, 28, 1 ))
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist