R/createCustomModel.R
createSimpleFullyConvolutionalNeuralNetworkModel3D.Rd
Creates a keras model implementation of the Simple Fully Convolutional Network model from the FMRIB group:
createSimpleFullyConvolutionalNeuralNetworkModel3D( inputImageSize, numberOfFiltersPerLayer = c(32, 64, 128, 256, 256, 64), numberOfBins = 40, dropoutRate = 0.5, doExperimentalVariant = FALSE )
inputImageSize | Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). |
---|---|
numberOfFiltersPerLayer | number of filters for the convolutional layers |
numberOfBins | number of bins for final softmax output. |
dropoutRate | dropout rate before final convolution layer. |
a SCFN keras model
\url{https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain}
Tustison NJ
library( ANTsRNet ) model <- createSimpleFullyConvolutionalNeuralNetworkModel3D( list( NULL, NULL, NULL, 1 ) )#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist