Wraps the EfficientAttentionLayer3D modified from the following python implementation
layer_efficient_attention_3d( object, numberOfFiltersFG = 4L, numberOfFiltersH = 8L, kernelSize = 1L, poolSize = 2L, doConcatenateFinalLayers = FALSE, trainable = TRUE )
object | Object to compose layer with. This is either a keras::keras_model_sequential to add the layer to or another Layer which this layer will call. |
---|---|
numberOfFiltersFG | number of filters for F and G layers. |
numberOfFiltersH | number of filters for H. If |
kernelSize | kernel size in convolution layer. |
poolSize | pool size in max pool layer. |
doConcatenateFinalLayers | concatenate final layer with input. Alternatively, add. Default = FALSE |
a keras layer tensor
https://github.com/taki0112/Self-Attention-GAN-Tensorflow
based on the following paper:
https://arxiv.org/abs/1805.08318
if (FALSE) { library( keras ) library( ANTsRNet ) inputShape <- c( 100, 100, 100, 3 ) input <- layer_input( shape = inputShape ) numberOfFiltersFG <- 64L outputs <- input %>% layer_efficient_attention_3d( numberOfFiltersFG ) model <- keras_model( inputs = input, outputs = outputs ) }