Creates a keras model of the Vgg deep learning architecture for image recognition based on the paper

createVggModel2D(
  inputImageSize,
  numberOfClassificationLabels = 1000,
  layers = c(1, 2, 3, 4, 4),
  lowestResolution = 64,
  convolutionKernelSize = c(3, 3),
  poolSize = c(2, 2),
  strides = c(2, 2),
  numberOfDenseUnits = 4096,
  dropoutRate = 0,
  style = 19,
  mode = c("classification", "regression")
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

numberOfClassificationLabels

Number of segmentation labels.

layers

a vector determining the number of filters defined at for each layer.

lowestResolution

number of filters at the beginning.

convolutionKernelSize

2-d vector definining the kernel size during the encoding path

poolSize

2-d vector defining the region for each pooling layer.

strides

2-d vector describing the stride length in each direction.

numberOfDenseUnits

integer for the number of units in the last layers.

dropoutRate

float between 0 and 1 to use between dense layers.

style

'16' or '19' for VGG16 or VGG19, respectively.

mode

'classification' or 'regression'.

Value

a VGG keras model

Details

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

available here:

    \url{https://arxiv.org/abs/1409.1556}

This particular implementation was influenced by the following python implementation:

    \url{https://gist.github.com/baraldilorenzo/8d096f48a1be4a2d660d}

Author

Tustison NJ

Examples

library( ANTsRNet ) library( keras ) library( ANTsR ) mnistData <- dataset_mnist()
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist
numberOfLabels <- 10 # Extract a small subset for something that can run quickly. # We also need to resample since the native mnist data size does # not fit with GoogLeNet parameters. resampledImageSize <- c( 100, 100 ) numberOfTrainingData <- 10 numberOfTestingData <- 5 X_trainSmall <- as.array( resampleImage( as.antsImage( mnistData$train$x[1:numberOfTrainingData,,] ), c( numberOfTrainingData, resampledImageSize ), TRUE ) )
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'check_ants': error in evaluating the argument 'object' in selecting a method for function 'as.antsImage': object 'mnistData' not found
X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) )
#> Error in array(data = X_trainSmall, dim = c(dim(X_trainSmall), 1)): object 'X_trainSmall' not found
Y_trainSmall <- to_categorical( mnistData$train$y[1:numberOfTrainingData], numberOfLabels )
#> Error in to_categorical(mnistData$train$y[1:numberOfTrainingData], numberOfLabels): object 'mnistData' not found
X_testSmall <- as.array( resampleImage( as.antsImage( mnistData$test$x[1:numberOfTestingData,,] ), c( numberOfTestingData, resampledImageSize ), TRUE ) )
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'check_ants': error in evaluating the argument 'object' in selecting a method for function 'as.antsImage': object 'mnistData' not found
X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) )
#> Error in array(data = X_testSmall, dim = c(dim(X_testSmall), 1)): object 'X_testSmall' not found
Y_testSmall <- to_categorical( mnistData$test$y[1:numberOfTestingData], numberOfLabels )
#> Error in to_categorical(mnistData$test$y[1:numberOfTestingData], numberOfLabels): object 'mnistData' not found
# We add a dimension of 1 to specify the channel size inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )
#> Error in eval(expr, envir, enclos): object 'X_trainSmall' not found
model <- createVggModel2D( inputImageSize = c( resampledImageSize, 1 ), numberOfClassificationLabels = numberOfLabels )
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist
model %>% compile( loss = 'categorical_crossentropy', optimizer = optimizer_adam( lr = 0.0001 ), metrics = c( 'categorical_crossentropy', 'accuracy' ) )
#> Error in compile(., loss = "categorical_crossentropy", optimizer = optimizer_adam(lr = 1e-04), metrics = c("categorical_crossentropy", "accuracy")): object 'model' not found
# Comment out the rest due to travis build constraints # track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1, # epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 ) # Now test the model # testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall ) # predictedData <- model %>% predict( X_testSmall, verbose = 1 )