Wasserstein generative adverserial network from the paper:
https://arxiv.org/abs/1701.07875
and ported from the Keras (python) implementation:
https://github.com/eriklindernoren/Keras-GAN/blob/master/wgan/wgan.py
$initialize
instantiates a new class and builds the
generator and critic.
$buildGenerator
build generator.
$buildGenerator
build critic.
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in array(data = mnist$train$x/255, dim = c(numberOfTrainingData, inputImageSize)): object 'mnist' not foundy <- mnist$train$y#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in unique(mnist$train$y): object 'mnist' not found# Instantiate the WGAN model ganModel <- WassersteinGanModel$new( inputImageSize = inputImageSize, latentDimension = 100 )#> Error in initialize(...): object 'inputImageSize' not found# \donttest{ ganModel$train( x, numberOfEpochs = 5 )#> Error in eval(expr, envir, enclos): object 'ganModel' not found# }