R/createGoogLeNetModel.R
createGoogLeNetModel2D.Rd
Creates a keras model of the GoogLeNet deep learning architecture for image recognition based on the paper
createGoogLeNetModel2D( inputImageSize, numberOfClassificationLabels = 1000, mode = c("classification", "regression") )
inputImageSize | Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
---|---|
numberOfClassificationLabels | Number of segmentation labels. |
mode | 'classification' or 'regression'. |
a GoogLeNet keras model
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going Deeper with Convolutions C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception Architecture for Computer Vision
available here:
https://arxiv.org/abs/1409.4842 https://arxiv.org/abs/1512.00567
This particular implementation was influenced by the following python implementation:
https://github.com/fchollet/deep-learning-models/blob/master/inception_v3.py
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not existnumberOfLabels <- 10 # Extract a small subset for something that can run quickly. # We also need to resample since the native mnist data size does # not fit with GoogLeNet parameters. resampledImageSize <- c( 100, 100 ) numberOfTrainingData <- 10 numberOfTestingData <- 5 X_trainSmall <- as.array( resampleImage( as.antsImage( mnistData$train$x[1:numberOfTrainingData,,] ), c( numberOfTrainingData, resampledImageSize ), TRUE ) )#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'check_ants': error in evaluating the argument 'object' in selecting a method for function 'as.antsImage': object 'mnistData' not found#> Error in array(data = X_trainSmall, dim = c(dim(X_trainSmall), 1)): object 'X_trainSmall' not found#> Error in to_categorical(mnistData$train$y[1:numberOfTrainingData], numberOfLabels): object 'mnistData' not foundX_testSmall <- as.array( resampleImage( as.antsImage( mnistData$test$x[1:numberOfTestingData,,] ), c( numberOfTestingData, resampledImageSize ), TRUE ) )#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'check_ants': error in evaluating the argument 'object' in selecting a method for function 'as.antsImage': object 'mnistData' not found#> Error in array(data = X_testSmall, dim = c(dim(X_testSmall), 1)): object 'X_testSmall' not found#> Error in to_categorical(mnistData$test$y[1:numberOfTestingData], numberOfLabels): object 'mnistData' not found# We add a dimension of 1 to specify the channel size inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )#> Error in eval(expr, envir, enclos): object 'X_trainSmall' not foundmodel <- createGoogLeNetModel2D( inputImageSize = c( resampledImageSize, 1 ), numberOfClassificationLabels = numberOfLabels )#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not existmodel %>% compile( loss = 'categorical_crossentropy', optimizer = optimizer_adam( lr = 0.0001 ), metrics = c( 'categorical_crossentropy', 'accuracy' ) )#> Error in compile(., loss = "categorical_crossentropy", optimizer = optimizer_adam(lr = 1e-04), metrics = c("categorical_crossentropy", "accuracy")): object 'model' not found# Comment out the rest due to travis build constraints # track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1, # epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 ) # Now test the model # testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall ) # predictedData <- model %>% predict( X_testSmall, verbose = 1 ) rm(model); gc()#> Warning: object 'model' not found#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2516911 134.5 4570014 244.1 NA 4570014 244.1 #> Vcells 4436437 33.9 12255594 93.6 65536 10006078 76.4model <- createGoogLeNetModel2D( inputImageSize = c( resampledImageSize, 1 ), numberOfClassificationLabels = 2 )#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Warning: object 'model' not found#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2516797 134.5 4570014 244.1 NA 4570014 244.1 #> Vcells 4436255 33.9 12255594 93.6 65536 10006078 76.4#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Warning: object 'model' not found#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2516827 134.5 4570014 244.1 NA 4570014 244.1 #> Vcells 4436307 33.9 12255594 93.6 65536 10006078 76.4