Perform hippocampal/entorhinal segmentation in T1 and T1/T2 images using labels from Mike Yassa's lab---https://faculty.sites.uci.edu/myassa/
deepFlash( t1, t2 = NULL, doPreprocessing = TRUE, antsxnetCacheDirectory = NULL, useRankIntensity = TRUE, verbose = FALSE )
t1 | raw or preprocessed 3-D T1-weighted brain image. |
---|---|
t2 | optional raw or preprocessed 3-D T2-weighted brain image. |
doPreprocessing | perform preprocessing. See description above. |
antsxnetCacheDirectory | destination directory for storing the downloaded
template and model weights. Since these can be resused, if
|
useRankIntensity | If false, use histogram matching with cropped template ROI. Otherwise, use a rank intensity transform on the cropped ROI. |
verbose | print progress. |
list consisting of the segmentation image and probability images for each label.
Current citation: https://www.medrxiv.org/content/10.1101/2023.01.17.23284693v4
The labeling is as follows:
Label 0 :background
Label 5 :left aLEC
Label 6 :right aLEC
Label 7 :left pMEC
Label 8 :right pMEC
Label 9 :left perirhinal
Label 10:right perirhinal
Label 11:left parahippocampal
Label 12:right parahippocampal
Label 13:left DG/CA2/CA3/CA4
Label 14:right DG/CA2/CA3/CA4
Label 15:left CA1
Label 16:right CA1
Label 17:left subiculum
Label 18:right subiculum
Preprocessing on the training data consisted of:
n4 bias correction,
affine registration to deep flash template.
which is performed on the input images if doPreprocessing = TRUE
.
Tustison NJ
if (FALSE) { library( ANTsRNet ) library( keras ) image <- antsImageRead( "t1.nii.gz" ) results <- deepFlash( image ) }