Perform hippocampal/entorhinal segmentation in T1 and T1/T2 images using labels from Mike Yassa's lab---https://faculty.sites.uci.edu/myassa/

deepFlash(
  t1,
  t2 = NULL,
  doPreprocessing = TRUE,
  antsxnetCacheDirectory = NULL,
  useRankIntensity = TRUE,
  verbose = FALSE
)

Arguments

t1

raw or preprocessed 3-D T1-weighted brain image.

t2

optional raw or preprocessed 3-D T2-weighted brain image.

doPreprocessing

perform preprocessing. See description above.

antsxnetCacheDirectory

destination directory for storing the downloaded template and model weights. Since these can be resused, if is.null(antsxnetCacheDirectory), these data will be downloaded to the inst/extdata/ subfolder of the ANTsRNet package.

useRankIntensity

If false, use histogram matching with cropped template ROI. Otherwise, use a rank intensity transform on the cropped ROI.

verbose

print progress.

Value

list consisting of the segmentation image and probability images for each label.

Details

Current citation: https://www.medrxiv.org/content/10.1101/2023.01.17.23284693v4

The labeling is as follows:

  • Label 0 :background

  • Label 5 :left aLEC

  • Label 6 :right aLEC

  • Label 7 :left pMEC

  • Label 8 :right pMEC

  • Label 9 :left perirhinal

  • Label 10:right perirhinal

  • Label 11:left parahippocampal

  • Label 12:right parahippocampal

  • Label 13:left DG/CA2/CA3/CA4

  • Label 14:right DG/CA2/CA3/CA4

  • Label 15:left CA1

  • Label 16:right CA1

  • Label 17:left subiculum

  • Label 18:right subiculum

Preprocessing on the training data consisted of:

  • n4 bias correction,

  • affine registration to deep flash template. which is performed on the input images if doPreprocessing = TRUE.

Author

Tustison NJ

Examples

if (FALSE) { library( ANTsRNet ) library( keras ) image <- antsImageRead( "t1.nii.gz" ) results <- deepFlash( image ) }