R/createImprovedWassersteinGanModel.R
ImprovedWassersteinGanModel.Rd
Improved Wasserstein generative adverserial network (with gradient penalty) from the paper:
https://arxiv.org/abs/1704.00028
and ported from the Keras (python) implementation:
https://github.com/eriklindernoren/Keras-GAN/blob/master/wgan_gp/wgan_gp.py
$initialize
instantiates a new class and builds the
generator and critic.
$buildGenerator
build generator.
$buildGenerator
build critic.
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in array(data = mnist$train$x/255, dim = c(numberOfTrainingData, inputImageSize)): object 'mnist' not foundy <- mnist$train$y#> Error in eval(expr, envir, enclos): object 'mnist' not found#> Error in unique(mnist$train$y): object 'mnist' not found# Instantiate the WGAN model ganModel <- ImprovedWassersteinGanModel$new( inputImageSize = inputImageSize, latentDimension = 100 )#> Error in initialize(...): object 'inputImageSize' not foundif (FALSE) { ganModel$train( x, numberOfEpochs = 2 ) } tryCatch({tensorflow::tf$compat$v1$enable_eager_execution()}, silent = TRUE, error = function(e) {})#> NULL