Low frequency, spatial varying simulated random bias field using random points and B-spline fitting.

simulateBiasField(
  domainImage,
  numberOfPoints = 10,
  sdBiasField = 1,
  numberOfFittingLevels = 4,
  meshSize = 1
)

Arguments

domainImage

image to define the spatial domain of the bias field.

numberOfPoints

number of randomly defined points to define the bias field (default = 10).

sdBiasField

characterize the standard deviation of the amplitude (default = 1).

numberOfFittingLevels

B-spline fitting parameter.

meshSize

B-spline fitting parameter (scalar or vector of size image dimension).

Value

simulated bias field

Author

Tustison NJ

Examples

library( ANTsR ) image <- antsImageRead( getANTsRData( "r16" ) ) logField <- simulateBiasField(image, numberOfPoints = 10, sdBiasField = 1.0, numberOfFittingLevels = 2, meshSize = 10 ) %>% iMath( "Normalize" ) logField <- ( exp( logField ) )^4 image <- image * logField rm(image); gc()
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2594229 138.6 4570014 244.1 NA 4570014 244.1 #> Vcells 4592982 35.1 14786712 112.9 65536 12254504 93.5
rm(logField); gc()
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2594217 138.6 4570014 244.1 NA 4570014 244.1 #> Vcells 4592998 35.1 14786712 112.9 65536 12254504 93.5