Low frequency, spatial varying simulated random bias field using random points and B-spline fitting.
simulateBiasField( domainImage, numberOfPoints = 10, sdBiasField = 1, numberOfFittingLevels = 4, meshSize = 1 )
domainImage | image to define the spatial domain of the bias field. |
---|---|
numberOfPoints | number of randomly defined points to define the bias field (default = 10). |
sdBiasField | characterize the standard deviation of the amplitude (default = 1). |
numberOfFittingLevels | B-spline fitting parameter. |
meshSize | B-spline fitting parameter (scalar or vector of size image dimension). |
simulated bias field
Tustison NJ
library( ANTsR ) image <- antsImageRead( getANTsRData( "r16" ) ) logField <- simulateBiasField(image, numberOfPoints = 10, sdBiasField = 1.0, numberOfFittingLevels = 2, meshSize = 10 ) %>% iMath( "Normalize" ) logField <- ( exp( logField ) )^4 image <- image * logField rm(image); gc()#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2594229 138.6 4570014 244.1 NA 4570014 244.1 #> Vcells 4592982 35.1 14786712 112.9 65536 12254504 93.5#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2594217 138.6 4570014 244.1 NA 4570014 244.1 #> Vcells 4592998 35.1 14786712 112.9 65536 12254504 93.5