R/randomImageTransformBatchGenerator.R
randomImageTransformBatchGenerator.Rd
This R6 class can be used to generate affine and other transformations of an
input image predictor and outcome population. It currently works for single
predictor and single outcome modalities but will be extended in the future.
The class calls randomImageTransformAugmentation
.
bgen = randomImageTransformBatchGenerator$new( ... ) bgen$generate( batchSize = 32L )
imageList
List of lists where the embedded list contains k images.
outcomeImageList
List of outcome images.
transformType
random transform type to generate;
one of the following options
c("Translation","Rigid","ScaleShear","Affine","Deformation",
"AffineAndDeformation")
imageDomain
defines the spatial domain for all images.
NOTE: if the input images do not match the spatial domain of the domain
image, we internally resample the target to the domain. This may have
unexpected consequences if you are not aware of this.
This operation will test
antsImagePhysicalSpaceConsistency
then call
resampleImageToTarget
upon failure.
sdAffine
roughly controls deviation from identity matrix
nControlPoints
number of control points for simulated deformation
spatialSmoothing
spatial smoothing for simulated deformation
toCategorical
boolean vector denoting whether the outcome class is categorical or not
imageDomainY
optional domain for outcome images
normalization
optional intensity normalization either none, standardize or 01
$new()
Initialize the class in default empty or filled form.
$generate
generate the batch of samples with given batch size
library( ANTsR ) i1 = antsImageRead( getANTsRData( "r16" ) ) i2 = antsImageRead( getANTsRData( "r64" ) ) s1 = thresholdImage( i1, "Otsu", 3 ) s2 = thresholdImage( i2, "Otsu", 3 ) # see ANTsRNet randomImageTransformAugmentation predictors = list( list(i1), list(i2), list(i1), list(i2) ) outcomes = list( s1, s2, s1, s2 ) trainingData <- randomImageTransformBatchGenerator$new( imageList = predictors, outcomeImageList = outcomes, transformType = "Affine", imageDomain = i1, toCategorical = TRUE ) testBatchGenFunction = trainingData$generate( 2 ) myout = testBatchGenFunction( )