Creates a keras model of the U-net + ResNet deep learning architecture for image segmentation and regression with the paper available here:

createResUnetModel2D(
  inputImageSize,
  numberOfOutputs = 1,
  numberOfFiltersAtBaseLayer = 32,
  bottleNeckBlockDepthSchedule = c(3, 4),
  convolutionKernelSize = c(3, 3),
  deconvolutionKernelSize = c(2, 2),
  dropoutRate = 0,
  weightDecay = 0.0001,
  mode = c("classification", "regression")
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

numberOfOutputs

Meaning depends on the mode. For 'classification' this is the number of segmentation labels. For 'regression' this is the number of outputs.

numberOfFiltersAtBaseLayer

number of filters at the beginning and end of the 'U'. Doubles at each descending/ascending layer.

bottleNeckBlockDepthSchedule

vector that provides the encoding layer schedule for the number of bottleneck blocks per long skip connection.

convolutionKernelSize

2-d vector defining the kernel size during the encoding path

deconvolutionKernelSize

2-d vector defining the kernel size during the decoding

dropoutRate

float between 0 and 1 to use between dense layers.

weightDecay

weighting parameter for L2 regularization of the kernel weights of the convolution layers. Default = 0.0.

mode

'classification' or 'regression'.

Value

a res/u-net keras model

Details

    \url{https://arxiv.org/abs/1608.04117}

This particular implementation was ported from the following python implementation:

    \url{https://github.com/veugene/fcn_maker/}

Author

Tustison NJ

Examples

library( ANTsR ) library( ANTsRNet ) library( keras ) imageIDs <- c( "r16", "r27", "r30", "r62", "r64", "r85" ) trainingBatchSize <- length( imageIDs ) # Perform simple 3-tissue segmentation. segmentationLabels <- c( 1, 2, 3 ) numberOfLabels <- length( segmentationLabels ) initialization <- paste0( 'KMeans[', numberOfLabels, ']' ) domainImage <- antsImageRead( getANTsRData( imageIDs[1] ) ) X_train <- array( data = NA, dim = c( trainingBatchSize, dim( domainImage ), 1 ) ) Y_train <- array( data = NA, dim = c( trainingBatchSize, dim( domainImage ) ) ) images <- list() segmentations <- list() for( i in seq_len( trainingBatchSize ) ) { cat( "Processing image", imageIDs[i], "\n" ) image <- antsImageRead( getANTsRData( imageIDs[i] ) ) mask <- getMask( image ) segmentation <- atropos( image, mask, initialization )$segmentation X_train[i,,, 1] <- as.array( image ) Y_train[i,,] <- as.array( segmentation ) }
#> Processing image r16 #> Processing image r27 #> Processing image r30 #> Processing image r62 #> Processing image r64 #> Processing image r85
Y_train <- encodeUnet( Y_train, segmentationLabels ) # Perform a simple normalization X_train <- ( X_train - mean( X_train ) ) / sd( X_train ) # Create the model model <- createResUnetModel2D( c( dim( domainImage ), 1 ), numberOfOutputs = numberOfLabels )
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist
rm(domainImage); gc()
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2524849 134.9 4570014 244.1 NA 4570014 244.1 #> Vcells 6025120 46.0 12255594 93.6 65536 12157326 92.8
metric_multilabel_dice_coefficient <- custom_metric( "multilabel_dice_coefficient", multilabel_dice_coefficient )
#> Error in value[[3L]](cond): The R function's signature must not contains esoteric Python-incompatible constructs. Detailed traceback: #> Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not exist
loss_dice <- function( y_true, y_pred ) { -multilabel_dice_coefficient(y_true, y_pred) } attr(loss_dice, "py_function_name") <- "multilabel_dice_coefficient" model %>% compile( loss = loss_dice, optimizer = optimizer_adam( lr = 0.0001 ), metrics = c( metric_multilabel_dice_coefficient, metric_categorical_crossentropy ) )
#> Error in compile(., loss = loss_dice, optimizer = optimizer_adam(lr = 1e-04), metrics = c(metric_multilabel_dice_coefficient, metric_categorical_crossentropy)): object 'model' not found
# Comment out the rest due to travis build constraints # Fit the model # track <- model %>% fit( X_train, Y_train, # epochs = 100, batch_size = 4, verbose = 1, shuffle = TRUE, # callbacks = list( # callback_model_checkpoint( "resUnetModelInterimWeights.h5", # monitor = 'val_loss', save_best_only = TRUE ), # callback_reduce_lr_on_plateau( monitor = "val_loss", factor = 0.1 ) # ), # validation_split = 0.2 ) rm(X_train); gc()
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2524994 134.9 4570014 244.1 NA 4570014 244.1 #> Vcells 5632061 43.0 12255594 93.6 65536 12157326 92.8
rm(Y_train); gc()
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2524986 134.9 4570014 244.1 NA 4570014 244.1 #> Vcells 4452422 34.0 12255594 93.6 65536 12157326 92.8
# Save the model and/or save the model weights # save_model_hdf5( model, filepath = 'resUnetModel.h5' ) # save_model_weights_hdf5( unetModel, filepath = 'resUnetModelWeights.h5' ) ) rm(model); gc()
#> Warning: object 'model' not found
#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 2525023 134.9 4570014 244.1 NA 4570014 244.1 #> Vcells 4452475 34.0 12255594 93.6 65536 12157326 92.8