R/deepEmbeddedClusteringUtilities.R
DeepEmbeddedClusteringModel.Rd
Deep embedded clustering (DEC) model class
array describing the auteoencoder.
number of clusters.
parameter
initializer for autoencoder
$initialize
instantiates a new class.
$pretrain
$loadWeights
$extractFeatures
$predictClusterLabels
$targetDistribution
$compile
$fit
Tustison NJ
if (FALSE) { library( keras ) library( ANTsRNet ) fmnist <- dataset_fashion_mnist() numberOfTrainingData <- length( fmnist$train$y ) numberOfTestingData <- length( fmnist$test$y ) numberOfPixels <- prod( dim( fmnist$test$x[1,,] ) ) fmnist$train$xreshaped <- array_reshape( fmnist$train$x, dim = c( numberOfTrainingData, numberOfPixels ), order = "C" ) fmnist$test$xreshaped <- array_reshape( fmnist$train$x, dim = c( numberOfTrainingData, numberOfPixels ), order = "C" ) x <- rbind( fmnist$test$xreshaped, fmnist$train$xreshaped ) / 255 y <- c( fmnist$test$y, fmnist$train$y ) numberOfClusters <- length( unique( fmnist$train$y ) ) initializer <- initializer_variance_scaling( scale = 1/3, mode = 'fan_in', distribution = 'uniform' ) pretrainOptimizer <- optimizer_sgd( lr = 1.0, momentum = 0.9 ) decModel <- DeepEmbeddedClusteringModel$new( numberOfUnitsPerLayer = c( numberOfPixels, 500, 500, 2000, 10 ), numberOfClusters = numberOfClusters, initializer = initializer ) modelWeightsFile <- "decAutoencoderModelWeights.h5" if( ! file.exists( modelWeightsFile ) ) { decModel$pretrain( x = x, optimizer = optimizer_sgd( lr = 1.0, momentum = 0.9 ), epochs = 300L, batchSize = 256L ) save_model_weights_hdf5( decModel$autoencoder, modelWeightsFile ) } else { load_model_weights_hdf5( decModel$autoencoder, modelWeightsFile ) } decModel$compile( optimizer = optimizer_sgd( lr = 1.0, momentum = 0.9 ), loss = 'kld' ) yPredicted <- decModel$fit( x, maxNumberOfIterations = 2e4, batchSize = 256, tolerance = 1e-3, updateInterval = 10 ) }