R/createResNetWithSpatialTransformerNetworkModel.R
createResNetWithSpatialTransformerNetworkModel2D.Rd
Creates a keras model of the ResNet deep learning architecture for image classification with a spatial transformer network (STN) layer. The paper is available here:
createResNetWithSpatialTransformerNetworkModel2D( inputImageSize, numberOfClassificationLabels = 1000, layers = 1:4, residualBlockSchedule = c(3, 4, 6, 3), lowestResolution = 64, cardinality = 1, numberOfSpatialTransformerUnits = 50, resampledSize = c(64, 64), mode = c("classification", "regression") )
inputImageSize | Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
---|---|
numberOfClassificationLabels | Number of segmentation labels. |
layers | a vector determining the number of 'filters' defined at for each layer. |
residualBlockSchedule | vector defining the how many residual blocks repeats. |
lowestResolution | number of filters at the initial layer. |
cardinality | perform ResNet (cardinality = 1) or ResNeXt (cardinality != 1 but powers of 2---try '32' ) |
numberOfSpatialTransformerUnits | number of units in the dense layer. |
resampledSize | output image size of the spatial transformer network. |
mode | 'classification' or 'regression'. |
an STN + ResNet keras model
https://arxiv.org/abs/1512.03385
Tustison NJ
if (FALSE) { library( ANTsRNet ) library( keras ) mnistData <- dataset_mnist() numberOfLabels <- 10 # Extract a small subset for something that can run quickly X_trainSmall <- mnistData$train$x[1:10,,] X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) ) Y_trainSmall <- to_categorical( mnistData$train$y[1:10], numberOfLabels ) X_testSmall <- mnistData$test$x[1:10,,] X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) ) Y_testSmall <- to_categorical( mnistData$test$y[1:10], numberOfLabels ) # We add a dimension of 1 to specify the channel size inputImageSize <- c( dim( X_trainSmall )[2:3], 1 ) model <- createResNetWithSpatialTransformerNetworkModel2D( inputImageSize = inputImageSize, numberOfClassificationLabels = numberOfLabels ) model %>% compile( loss = 'categorical_crossentropy', optimizer = optimizer_adam( lr = 0.0001 ), metrics = c( 'categorical_crossentropy', 'accuracy' ) ) # Comment out the rest due to travis build constraints # track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1, # epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 ) # Now test the model # testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall ) # predictedData <- model %>% predict( X_testSmall, verbose = 1 ) rm(model); gc() }