Anchor box layer for SSD architecture (2-D).
a 5-D tensor with shape \( batchSize \times widthSize \times heightSize \times numberOfBoxes \times 8 \) In the last dimension, the first 4 values correspond to the 2-D coordinates of the bounding boxes and the other 4 are the variances.
anchorBoxGenerator <- AnchorBoxLayer2D$new( imageSize, scale, nextScale, aspectRatios = c( '1:1', '2:1', '1:2' ), variances = 1.0 ) anchorBoxGenerator$call( x, mask = NULL ) anchorBoxGenerator$compute_output_shape( input_shape )
A process
object.
size of the input image.
scale of each box (in pixels).
next scale of each box (in pixels).
vector describing the geometries of the anchor boxes for this layer.
a list of 4 floats > 0 with scaling factors for the encoded predicted box coordinates. A variance value of 1.0 would apply no scaling at all to the predictions, while values in (0,1) upscale the encoded predictions and values greater than 1.0 downscale the encoded predictions. Defaults to 1.0.
$initialize
instantiates a new class.
$call
main body.
$compute_output_shape
computes the output shape.
Tustison NJ
#> Error in py_discover_config(required_module, use_environment): Python specified in RETICULATE_PYTHON (/Users/ntustison/anaconda3/envs/antsx/bin/python3) does not existx$build()#> Error in eval(expr, envir, enclos): object 'x' not found