Creates a keras model of the spatial transformer network:

createSimpleClassificationWithSpatialTransformerNetworkModel3D(
  inputImageSize,
  resampledSize = c(30, 30, 30),
  numberOfClassificationLabels = 10
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

resampledSize

resampled size of the transformed input images.

numberOfClassificationLabels

Number of classes.

Value

a keras model

Details

    \url{https://arxiv.org/abs/1506.02025}

based on the following python Keras model:

    \url{https://github.com/oarriaga/STN.keras/blob/master/src/models/STN.py}

Author

Tustison NJ

Examples

if (FALSE) { library( ANTsRNet ) library( keras ) mnistData <- dataset_mnist() numberOfLabels <- 10 # Extract a small subset for something that can run quickly X_trainSmall <- mnistData$train$x[1:100,,] X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) ) Y_trainSmall <- to_categorical( mnistData$train$y[1:100], numberOfLabels ) X_testSmall <- mnistData$test$x[1:10,,] X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) ) Y_testSmall <- to_categorical( mnistData$test$y[1:10], numberOfLabels ) # We add a dimension of 1 to specify the channel size inputImageSize <- c( dim( X_trainSmall )[2:3], 1 ) model <- createSimpleClassificationWithSpatialTransformerNetworkModel2D( inputImageSize = inputImageSize, resampledSize = c( 30, 30 ), numberOfClassificationLabels = numberOfLabels ) }