networkEiganat.Rd
Decomposes a matrix into sparse eigenevectors to maximize explained variance.
networkEiganat(
Xin,
sparseness = c(0.1, 0.1),
nvecs = 5,
its = 5,
gradparam = 1,
mask = NA,
v,
prior,
pgradparam = 0.1,
clustval = 0,
downsample = 0,
doscale = T,
domin = T,
verbose = F,
dowhite = 0,
timeme = T,
addb = T,
useregression = T
)
n by p input images , subjects or time points by row , spatial variable lies along columns
sparseness pair c( 0.1 , 0.1 )
number of vectors
number of iterations
gradient descent parameter for data
optional antsImage mask
the spatial solultion
the prior
gradient descent parameter for prior term
integer greater than or equal to zero
bool
bool
bool
bool
bool
bool
bool
bool
outputs a decomposition of a population or time series matrix
if (FALSE) { # \dontrun{
mat <- replicate(100, rnorm(20))
mydecom <- networkEiganat(mat, nvecs = 5)
ch1 <- usePkg("randomForest")
ch2 <- usePkg("BGLR")
if (ch1 & ch2) {
data(mice)
snps <- quantifySNPs(mice.X)
numericalpheno <- as.matrix(mice.pheno[, c(4, 5, 13, 15)])
numericalpheno <- residuals(lm(numericalpheno ~
as.factor(mice.pheno$Litter)))
phind <- 3
nfolds <- 6
train <- sample(rep(c(1:nfolds), 1800 / nfolds))
train <- (train < 4)
lowr <- lowrankRowMatrix(as.matrix(snps[train, ]), 900)
snpdS <- sparseDecom(lowr, nvecs = 2, sparseness = (-0.001), its = 3)
snpdF <- sparseDecom(lowrankRowMatrix(as.matrix(snps[train, ]), 100),
nvecs = 2, sparseness = (-0.001), its = 3
)
projmat <- as.matrix(snpdS$eig)
projmat <- as.matrix(snpdF$eig)
snpdFast <- networkEiganat(as.matrix(snps[train, ]),
nvecs = 2,
sparseness = c(1, -0.001), downsample = 45, verbose = T, its = 3,
gradparam = 10
)
snpdSlow <- networkEiganat(as.matrix(snps[train, ]),
nvecs = 2,
sparseness = c(1, -0.001), downsample = 0, verbose = T,
its = 3, gradparam = 10
)
snpd <- snpdSlow
snpd <- snpdFast
projmat <- as.matrix(snpd$v)
snpdF <- sparseDecom(lowrankRowMatrix(as.matrix(snps[train, ]), 10),
nvecs = 2, sparseness = (-0.001), its = 3
)
projmat <- as.matrix(snpdS$eig)
snpse <- as.matrix(snps[train, ]) %*% projmat
traindf <- data.frame(bmi = numericalpheno[train, phind], snpse = snpse)
snpse <- as.matrix(snps[!train, ]) %*% projmat
testdf <- data.frame(bmi = numericalpheno[!train, phind], snpse = snpse)
myrf <- glm(bmi ~ ., data = traindf)
preddf <- predict(myrf, newdata = testdf)
cor.test(preddf, testdf$bmi)
} # ch1 and ch2
###########
} # }