SubgradientL1Regression solves y approx x beta

subgradientL1Regression(
  y,
  x,
  s = 0.01,
  percentvals = 0.1,
  nits = 100,
  betas = NA,
  sparval = NA
)

Arguments

y

outcome variable

x

predictor matrix

s

gradient descent parameter

percentvals

percent of values to use each iteration

nits

number of iterations

betas

initial guess at solution

sparval

sparseness

Value

output has a list of summary items

Author

Avants BB

Examples


mat <- replicate(1000, rnorm(200))
y <- rnorm(200)
wmat <- subgradientL1Regression(y, mat, percentvals = 0.05)
print(wmat$resultcorr)
#>       cor 
#> 0.7699053