simlr.perm.Rd
This function performs permutation tests to assess the significance of a SiMLR analysis. For more detail on input parameters, see the original function.
simlr.perm(
voxmats,
smoothingMatrices,
iterations = 10,
sparsenessQuantiles,
positivities,
initialUMatrix,
mixAlg = c("svd", "ica", "avg", "rrpca-l", "rrpca-s", "pca", "stochastic"),
orthogonalize = FALSE,
repeatedMeasures = NA,
lineSearchRange = c(-1e+10, 1e+10),
lineSearchTolerance = 1e-08,
randomSeed,
constraint = c("none", "Grassmann", "Stiefel"),
energyType = c("cca", "regression", "normalized", "ucca", "lowRank",
"lowRankRegression"),
vmats,
connectors = NULL,
optimizationStyle = c("lineSearch", "mixed", "greedy"),
scale = c("centerAndScale", "sqrtnp", "np", "center", "norm", "none", "impute",
"eigenvalue", "robust"),
expBeta = 0,
jointInitialization = TRUE,
sparsenessAlg = NA,
verbose = FALSE,
nperms = 50,
FUN = "mean"
)
A list of voxel matrices.
A list of smoothing matrices.
Number of iterations. Default is 10.
A vector of sparseness quantiles.
A vector of positivity constraints.
Initial U matrix for the algorithm.
The mixing algorithm to use. Default is 'svd'.
Logical indicating whether to orthogonalize. Default is FALSE.
Repeated measures data. Default is NA.
Range for line search. Default is c(-1e+10, 1e+10).
Tolerance for line search. Default is 1e-08.
Seed for random number generation.
The constraint type. Default is 'none'.
The energy type. Default is 'cca'.
List of V matrices - optional initialization matrices
List of connectors. Default is NULL.
The optimization style. Default is 'lineSearch'.
Scaling method. Default is 'centerAndScale'.
Exponential beta value. Default is 0.
Logical indicating joint initialization. Default is TRUE.
Sparseness algorithm. Default is NA.
Logical indicating whether to print verbose output. Default is FALSE. values > 1 lead to more verbosity
Number of permutations for significance testing. Default is 50.
function for summarizing variance explained
A data frame containing p-values for each permutation.