rsfDenoise.Rd
Uses a target function to denoise resting bold data
rsfDenoise(
boldmatrix,
targety,
motionparams = NA,
selectionthresh = 0.1,
maxnoisepreds = 1:12,
debug = FALSE,
polydegree = 4,
crossvalidationgroups = 4,
tr = 1,
scalemat = F,
noisepoolfun = max
)
input bold matrix
target to predict
motion parameters / nuisance variables
e.g. 0.1 take 10 percent worst variables for noise estimation
integer search range e.g 1:10
boolean
eg 4 for polynomial nuisance variables
prior defined or integer valued
bold tr
boolean
function to help select noise pool e.g. max
matrix is output
if (FALSE) { # \dontrun{
# if (!exists("fn") ) fn<-getANTsRData("pcasl")
# bold <- antsImageRead( fn )
# avgbold<-getAverageOfTimeSeries(bold)
# boldmask<-getMask( avgbold )
# roimask<-antsImageRead("roi.nii.gz")
# timeselect<-10:(dim(bold)[4]-10)
# # can do this if you like its approach
# cleanfMRI <- preprocessfMRI( bold, maskImage=boldmask,
# frequencyLowThreshold = 0.01, frequencyHighThreshold = 0.1,
# spatialSmoothingType = "gaussian", spatialSmoothingParameters = 2,
# residualizeMatrix=TRUE, numberOfCompCorComponents=2 )
# boldmat<-timeseries2matrix( cleanfMRI$cleanBoldImage, cleanfMRI$maskImage )
# roimat<-timeseries2matrix( cleanfMRI$cleanBoldImage, roimask )
# roimean<-rowMeans( roimat ) # svd instead?
# roimat<-matrix( roimean, ncol=1)
# dnz<-rsfDenoise( boldmat[timeselect,] ,
# roimat[timeselect,1], motionparams=NA,
# polydegree=1, crossvalidationgroups = 8, maxnoisepreds=c(2:4), debug=F )
# # might iterate over above to further refine noise variables
# mdl<-bigLMStats( lm( boldmat[timeselect,] ~ roimean[timeselect] +
# dnz$polys + dnz$noiseu ), 0.001 )
# betas<-mdl$beta.t[1,]
# sum(betas[betas > 3])
# betaimg<-antsImageClone( boldmask )
# betaimg[ boldmask == 1 ]<-betas
# antsImageWrite( betaimg, "betas2.nii.gz" )
#
# # more complex
# bold<-antsImageRead("bold.nii.gz")
# boldmask<-antsImageRead("meanboldmask.nii.gz")
# aalimg<-antsImageRead("meanboldAALmask.nii.gz")
# data("aal",package="ANTsR")
# dmnlabels<-aal$label_num[aal$isdmn>0]
# aalvec<-aalimg > 0
# whichregion<-3
# for ( i in 1:max(aalimg) )
# {
# if ( ! ( i %in% dmnlabels[whichregion] ) )
# {
# aalimg[ aalimg == as.numeric(i) ]<-0
# }
# }
# maskvec<-boldmask > 0 & aalimg == whichregion
# boldmask[ maskvec ]<-0
# timeselect<-10:dim(bold)[4]
# if ( ! exists("moco") ) {
# moco<-.motion_correction(bold,moreaccurate=1)
# moco<-as.matrix( moco$moco_params )[timeselect,3:ncol(moco$moco_params)]
# }
# boldmat<-timeseries2matrix(bold,boldmask)
# boldmat<-boldmat[timeselect,]
# aalimg[aalimg > 0 ]<-1
# dmnvec<-rowMeans(timeseries2matrix(bold,aalimg))[timeselect]
# dmnvec<-(stl(ts(dmnvec, frequency = 4),"per")$time.series)[,2]
# dmnvec2<-(stl(ts(dmnvec, frequency = 100),"per")$time.series)[,2]
# dmnvec<-ts(as.numeric(dmnvec)-as.numeric(dmnvec2))
# dmnmat<-matrix( dmnvec, ncol=1)
# dnz<-rsfDenoise( boldmat , dmnmat[,1], motionparams=moco, polydegree=4,
# crossvalidationgroups = 8, maxnoisepreds=1:4, debug=F )
# print(paste("Best number of noise regressors",dnz$n))
# # now recompute the matrix using the full mask
# boldmask<-antsImageRead("meanboldmask.nii.gz")
# boldmat<-timeseries2matrix(bold,boldmask)
# boldmat<-boldmat[timeselect,]
# mdl<-bigLMStats( lm( boldmat ~ dmnmat[,1] + dnz$polys + dnz$noiseu ), 0.001 )
# betas<-mdl$beta.t[1,]
} # }