orthogonalizeAndQSparsify.Rd
This function implements a quantile-based sparsification operation.
orthogonalizeAndQSparsify(
v,
sparsenessQuantile = 0.5,
positivity = "either",
orthogonalize = TRUE,
softThresholding = FALSE,
unitNorm = FALSE,
sparsenessAlg = NA
)
Input matrix
Quantile to control sparseness - higher is sparser
Restrict to positive or negative solution (beta) weights. Choices are "positive", "negative", or "either".
Run Gram-Schmidt if TRUE.
Use soft thresholding if TRUE.
Normalize each vector to unit norm if TRUE.
If specified, use a matrix partition algorithm ("orthorank", "spmp", "sum_preserving_matrix_partition" or "basic").
A sparsified and optionally orthogonalized matrix.