getASLNoisePredictors.Rd
Get nuisance predictors from ASL images
getASLNoisePredictors(
aslmat,
tc,
noisefrac = 0.1,
polydegree = "loess",
k = 5,
npreds = 12,
method = "noisepool",
covariates = NA,
noisepoolfun = max
)
ASL input matrix.
Tag-control sawtooth pattern vector.
Fraction of data to include in noise pool.
Degree of polynomial for detrending, with a value of 0
indicating no detrending, or 'loess'
for LOESS-based estimation of
global time-series trends.
Number of cross-validation folds.
Number of predictors to output.
Method of selecting noisy voxels. One of 'compcor' or
'noisepool'. See Details
.
Covariates to be considered when assessing prediction of tc pattern.
Function used for aggregating R^2 values.
Matrix of size nrow(aslmat)
by npreds
, containing a
timeseries of all the nuisance predictors.
# for real data do img<-antsImageRead(getANTsRData("pcasl"),4)
set.seed(120)
img <- makeImage(c(10, 10, 10, 20), rnorm(1000 * 20) + 1)
mask <- getMask(getAverageOfTimeSeries(img))
aslmat <- timeseries2matrix(img, mask)
tc <- rep(c(0.5, -0.5), length.out = nrow(aslmat))
noise <- getASLNoisePredictors(aslmat, tc, k = 2, npreds = 2, noisefrac = 0.5)
cm <- colMeans(noise)
rounding_type <- RNGkind()[3]
if (getRversion() < "3.6.0" || rounding_type == "Rounding") {
testthat::expect_equal(cm, c(-0.223292128499263, 0.00434481670243642), tolerance = .01)
} else {
testthat::expect_equal(cm, c(-0.223377249912075, 0.0012754214030999), tolerance = .01)
}