fuzzySpatialCMeansSegmentation.Rd
Fuzzy spatial c-means for image segmentation.
fuzzySpatialCMeansSegmentation(
image,
mask = NULL,
numberOfClusters = 4,
m = 2,
p = 1,
q = 1,
radius = 2,
maxNumberOfIterations = 20,
convergenceThreshold = 0.02,
verbose = FALSE
)
image to be segmented.
optional mask image. Otherwise, the entire image is used.
number of segmentation clusters
fuzziness parameter (default = 2).
membership importance parameter (default = 1).
spatial constraint importance parameter (default = 1).
q = 0
is equivalent to conventional fuzzy c-means.
neighborhood radius (scalar or array) for spatial constraint.
iteration limit (default = 20).
Convergence between iterations is measured using the Dice coefficient (default = 0.02).
print progress.
list containing segmentation and probability images
Image segmentation using fuzzy spatial c-means as described in
Chuang et al., Fuzzy c-means clustering with spatial information for image segmentation. CMIG: 30:9-15, 2006.
image <- antsImageRead(getANTsRData("r16"))
mask <- getMask(image)
fuzzy <- fuzzySpatialCMeansSegmentation(image, mask)