functionalLungSegmentation.Rd
Lung segmentation into classes based on ventilation as described in this paper:
functionalLungSegmentation(
image,
mask,
numberOfIterations = 2,
numberOfAtroposIterations = 5,
mrfParameters = "[0.7,2x2x2]",
numberOfClusters = 6,
clusterCenters = NA,
biasCorrection = "n4",
verbose = TRUE
)
input proton-weighted MRI.
mask image designating the region to segment. 0/1 = background/foreground.
number of Atropos <–> bias correction iterations (outer loop).
number of Atropos iterations (inner loop).
If numberOfAtroposIterations = 0
, this is equivalent to K-means with
no MRF priors.
parameters for MRF in Atropos.
number of tissue classes (default = 4)
initialization centers for k-means
apply n3, n4, or no bias correction (default = "n4").
print progress to the screen.
segmentation image, probability images, and processed input image.
if (FALSE) { # \dontrun{
library(ANTsR)
image <- antsImageRead("lung.nii.gz")
mask <- antsImageRead("mask.nii.gz")
output <- functionalLungSegmentation(image, mask)
antsImageWrite(output$segmentationImage, "outputSegmentation.nii.gz")
} # }