estimate_rank_by_permutation_rv.Rd
Estimates the shared rank of a multi-view dataset. If permutations are used, it finds the rank that maximizes the signal-to-noise ratio against a permuted null model. If `n_permutations = 0`, it finds the "elbow" of the real data's signal curve.
estimate_rank_by_permutation_rv(
mat_list,
n_permutations = 20,
var_explained_threshold = 0.99,
return_max = FALSE
)
A list of numeric matrices [subjects x features].
The number of permutations to create the null model. If set to 0, the function will use the elbow detection method instead.
The variance threshold to determine the upper bound on k.
boolean just return the max likely rank from an individual matrix
A list containing `optimal_k`, a results tibble, and a plot.