antsr_spca_features.Rd
Applies sparse principal component analysis using the selected backend ("elasticnet", "PMA", or "sparsepca") to each matrix in a list of subject by voxel data.
antsr_spca_features(
data_matrices,
k,
method = c("default", "elasticnet", "PMA", "sparsepca"),
para = NULL
)
A list of numeric matrices. Each matrix should be subjects by voxels.
Integer. Number of components to retain.
Character. Sparse PCA backend to use. One of "default", "elasticnet", "PMA", or "sparsepca".
Sparsity control parameter(s). Interpretation depends on backend: - For "elasticnet": number of nonzero loadings per component (length-k vector). - For "PMA": L1 bound on loading vector (scalar or length-k). - For "sparsepca": ignored (uses built-in defaults). - For "default": length-k vector of sparsity parameters.
A named list of sparse projection matrices (voxels by k).