antsBOLDNetworkAnalysis.Rd
An implementation of a network analysis framework for BOLD data. We expect that you mapped a label image ( e.g. aal ) to the 3D BOLD space. We build a network and graph metrics from this image and these labels based on the user-defined graph density level.
antsBOLDNetworkAnalysis(
bold = NULL,
mask = NULL,
labels = NULL,
motion,
gdens = 0.2,
threshLo = 1,
threshHi = 90,
freqLo = 0.01,
freqHi = 0.1,
winsortrim = 0.02,
throwaway
)
input 4D image
antsImage defines areas of interest
antsImage defines regions of interest ie a parcellation
motion parameters - if missing, will estimate from data
graph density applied to network covariance matrix
lower threshold for the label image
upper threshold for the label image
lower frequency cutoff
upper frequency cutoff
winsorize the bold signal by these values eg 0.02
this number of initial bold volumes
list of outputs
# none yet - this is not very well tested with recent ANTsR
if (FALSE) { # \dontrun{
myimg <- antsImageRead(getANTsRData("ch2"), 3)
mylab <- antsImageRead(getANTsRData("ch2a"), 3)
boldfn <- getANTsRData("pcasl")
bold <- antsImageRead(boldfn, 4)
avgbold <- getAverageOfTimeSeries(bold)
breg <- antsRegistration(avgbold, myimg, typeofTransform = c("AffineFast"))
warpedParcellation <- antsApplyTransforms(avgbold, mylab,
transformlist = breg$fwdtransforms, interpolator = "NearestNeighbor"
)
mask <- getMask(avgbold)
warpedParcellation <- maskImage(warpedParcellation, img.mask = mask)
old <- NA
labels <- warpedParcellation
gdens <- 0.2
threshLo <- 1
threshHi <- 90
freqLo <- 0.01
freqHi <- 0.1
winsortrim <- 0.02
result <- antsBOLDNetworkAnalysis(bold = bold, mask = mask, warpedParcellation)
} # }