Source code for antspynet.utilities.custom_activation_layers
from tensorflow.keras.layers import Layer
import tensorflow as tf
[docs]class LogSoftmax(Layer):
"""Log Softmax activation function.
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
Arguments:
axis: Integer, axis along which the softmax normalization is applied.
"""
def __init__(self, axis=-1, **kwargs):
super(LogSoftmax, self).__init__(**kwargs)
self.supports_masking = True
self.axis = axis
def call(self, inputs):
return tf.nn.log_softmax(inputs, axis=self.axis)
def get_config(self):
config = {'axis': self.axis}
base_config = super(LogSoftmax, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape